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We deal with the detection of gravitational chirp signals among noisy data, where
the reception and the detection are piped and run in parallel. We consider the classical
theory of signal detection, which yields a detector with a “bank-of-filters” structure.
We investigate distributed network computing in order to implement such a detec-
tor by heterogeneous high performance workstations interconnected via an Ethernet
network. The goal is to design a distributed detector running on a number of avail-
able workstations. The computation is decomposed across the workstations in such
a way to minimize communications and to match the acquisition rate. Our approach
is general and can be used for networks of workstations different from those used
in our experimentation. We point out that the classical performance analysis seems
inappropriate if applied to real-time detection by heterogeneous distributed systems,
because the execution time requirements are disregarded. To take into account such
constraints we characterize the algorithm, evaluate performances on different work-
stations, and propose a task decomposition strategy assigning the app@paiate
to each workstation. © 1998 Academic Press

Key Wordsnetwork computing; real-time; optimal detection.

1. INTRODUCTION

Gravitational wave (GW) detection has become an important experimental research toy
Currently there are several projects in progress aiming to the realization of an interferomet
gravitational antenna for the detection of GW. In particular the scope of the Italian—Fren
VIRGO project [27] is the realization of a 3-km baseline interferometric antenna.
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16 MARANO, MEDUGNO, AND LONGO

In order to detect the emission of GW, we need a suitable filtering algorithm for rea
time processing of the data from the interferometric gravitational antenna. Several detect
algorithms have been proposed in [24], and a parallel implementation of a bank of filte
on a transputer-based computer has been discussed in [21]. More recently, a survey
number of statistical signal processing approaches to the detection of GW signals has b
published in [28]. Finally, the topic of noise level estimation in interferometric antenna
has been addressed in [13].

In this paper we consider the processing algorithm of the signals expected from a gr:
itational interferometer. We discuss an algorithm based orikbBhood ratio (LR) test
and the complexity of the resulting bank of matched filters; then we determine the memc
and the computational power required for processing data with the same acquisition rz
Such hardware resources are not available on a serial computer; therefore we adopt a
tributed approach in which several branches of the bank are processed over a single |
performance workstation in order to implement a detector prototype; a dedicated para
architecture is suitable to implement the detection over large parameter ranges and |
runs of experiments.

The paper is organized as follows: in Section 2 the problem of the detection of a gra
tational signal with chirp-like waveform is mathematically formulated. Section 3 describe
the computational approach of the matched-filters bank and some aspects of the algori
implementation as optimization, complexity analysis, evaluation of the necessary comp
ing resources. Section 4 deals with the design of the distributed algorithm, the performar
issues emphasizing the real-time constraints and the domain decomposition function,
model of the software performance on different workstations with UNIX operating systen

2. MATHEMATICAL FORMULATION OF THE PROBLEM

In this section we briefly describe in a mathematical framework the steps involved
the detection of a GW signal. First the signal model, which defines the noise-free anter
response to a gravitational wave, is introduced. Then a hypothesis test is employed to de
the presence of a GW signal in the noisy input; according to the Neyman—Pearson appros
we should compare the likelihood ratio (LR) with a threshold value, but our signal, an
consequently the LR, depends upon some unknown parameteigeiérlized likelihood
ratio test(GLRT) approach requires that the unknown parameters be their maximum lik
lihood estimates, which jointly maximize the LR. We impose necessary conditions for tt
maximum of the LR over all unknown parameters of the signal. It results that two paramete
only can be analytically evaluated so that substitution into the LR can be performed; t
maximum over the other two parameters can be found only numerically by an exhausti
search.

2.1. The Signal Model

An interferometric gravitational antenna potentially explores a frequency band frol
about 10 Hz to a few KHz and provides an accurate control of seismic, thermal, and phot
noise. Among several types of GW signals, a class of chirp waveforms is expected.

The chirp waveform is emitted by a binary star system. Neglecting tidal effects, tf
eccentricity of the orbit, the Doppler effect due to earth motion and the relativistic corre
tion, the noise-free antenna response to a GW that is the useful signal can be cast in
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form [20, 14]

s(t) = 1A(t, ta, 7) cogB(t, ta, ) + @)
t € (ta, ta + 1), 1)

where

t—t, ~1/4
Alt,ty,7) =171 f0_2<1— > ,
T
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Herel is an amplitude factor depending upon the amplitude and polarization of the wav
and from the geometry of the systefgjs the minimum frequency detectable by the antenna
(in VIRGO fy = 10 Hz),¢ is the initial phase, ant is the arrival time. The “sweep time”

T represents the signal duration, and in turn depends upon the “mass parateséthe
binary system and upofy, through

3 MNP o,

whereMg, is the solar mass unit [20, 11].

The chirp signal in the form (1) is an amplitude and frequency modulated signal, tf
instantaneous amplitude and frequency being monotonically increasing functions. At t
instantt, 4+ ¢ in which the system collapses (collapse time), both the instantaneous ar
plitude and frequency diverge. In fact, the instantaneous frequency of the chirp, which
related to the revolution frequency of the binary system, is [25]

t—t,\ V8
f(t):fo<1— - ) Hz. ®3)

The GW signal has, therefore, a known shape, but it depends upon the values of the
known parameters, ¢, t,, . Moreover, the signal provided by the interferometric antenna
includes noise from several sources in addition to, possibly, the useful sighal

2.2. Statistical Detection in the Presence of Additive White Gaussian Noise

We introduce a statistical hypothesis test [8] to detect a gravitational wave in the noi
signal received by the antenna.

Letting (0, T) be the observation interval an¢t) be the signal received by the antennain
the observationinterval, the problem can be formalized as the choice between two alterna
hypothesisHy andH; [10]:

Hi:v(t) = s(t) + n(t)

Ho : v(t) = n(b). “)

In the following we suppose thatt) is a sample function from a Gaussian white process
with power spectral densitijy/2.1

LA whitening filter can be employed if the receiver is subject to a colored noise (see [10]).
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The LR for the problem at hand can be written as [10]

2 (T 1 [T
A[v(t),@]:exp{N—O/o s(t,@)v(t)dt—no/o sz(t,e)dt}, (5)

where® is the signal parameter vectér = (1, ¢, ty, 7) .
Under the Neyman—Pearson criterion, that is to maximize the probability of detectic

(Py) forfixed false alarm probability®; 5), the optimum hypothesis test would be, assuming
that the useful signal be known,

Hi
A Z
Ho
As the useful signas(t) = s(t, ®) depends upon unknown paramet&swe use the
GLRT approach [26], which consists in substituting the unknown signal parameters wi

their maximum likelihood estimates over the dath). We search for the values 6f that
jointly maximize the likelihood ratio, that i€y, such that:

A@D®), Ou) = Max AW, 1, ¢, ta, 7). )

The hypothesis test then becomes

Hy
>
I!’Q,taa?gA(v(t)’ |7¢)7ta7 7:) |_<|0)‘“ (7)

In order to remove the parametdrand¢ from (7), we impose the necessary condition

for the relative maximum, obtaining the system of equations

% Alw®),l,¢,t3,7) =0

0
% Alw®),l,¢,t3,7) =0

a
A(v(t)7 |7 ¢a ta’ T) = 0
8ta

i Alw®),l,¢,t3,7) =0
0t

which in fact can be solved with respectit@and¢. On the other hand, the functional (7)
is highly multimodal with respect ty andz; hence, a search must be carried on. The tesi

can be recast as

R2(ta, 7) 1

max————> >, 8
W NoQ(r) (§ ®)

where
2 T 2
R(ta, ) _ / Alt, ta, 7) eiﬂ(t’ta’”v(t)dt
Q(7) 0o V()

is the square modulus of the cross-correlation of the “raw datg"with the complex and
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normalized expected signal. The terf@, t,, 7) andB(t, t,, T) were defined in Section 2.1.
In the square modulus of the previous expression, we can recognize a convolution betw
v(t) and a suitable complex filter matchedst®), having impulse response

o Atta+7t -1t 13, 7)

h(t, glfttatt—ttan) 9
o Nio1Ga) 9)
wheret € (0, ). Moreover, we get
T s(t,0) 1
© /o |2 fdc (10)

and the energy of the signal (1)§s= 12Q = 12/(f{'7).

3. THE BANK-OF-FILTERS DESIGN

In this section we describe the design of the algorithm, and the requirements of comy
tational resources for real-time detection.

3.1. The Computational Approach

In order to numerically implement the test, we have to discretize the problem. For th
purpose we sample the input signgit) at a suitable ratd, = 1/t.. As the spectrum of
the GW chirp (in the stationary phase approximation) assumes its maximfis aty and
decays likef =7/, f. = 1000 Hz is an appropriate choice.

The values of the sweep timedepend on the physical values for the mass paramete
and fo. Using the range of mass parameter given in [20], the “full range” in our setup i
T e (55 144x10%9).

In the discrete time we substitute the arrival titpeand the sweep time with adimen-
sional discrete values, = t, f; andw = = f;, wheren, e 0 =1{0,1,2,..., (T — 1) f¢},

w € @ = {Wnin, Wmin + Aw, wmin + 2Aw, ..., wmax}- Moreover, we replace the filter
h(t, ) with the numerical equivalent

The test (8) can then be written in the form

Hi

max |y(na, w)|* Z A, (12)
(Ng€o,wew) HO

where

(T-1fe
Y(naa l,U) = Z h(m, U))U(na +w — 1- m)

m=0

is the convolution at time, + w, between the input sequeneém) and the FIR filter
h(m, w).

The detector decides about the presence of a gravitational wave at interVadecbnds
(decision interval), until the processes are stopped at an undefined time. This implies t
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in each decision interval, a double maximization omgrandw must be performed on a
wide grid of values. We choose to search first for gaxn,, w)|> = |y(fa, w)|?, and
then to search for maxy(fa, w)|?> = |y(Aa, @)|%. In such a way the detector has been
decomposed aslaank of filtersstructure, each filter being tuned to a specific valua of
(hence ofr) according to (11).

The distance between the valueswdf two adjacent filters idw = At f¢; an important
result is that such spacing can be chosen approximately constant [20,A8]were equal
to 1 (the ideal minimum spacing), searching over the full range wbuld require about
10 filters. As this complexity is unaffordable a compromise must be taken. In the followin:
we assume\w = 240; such a value reasonably bounds the number of filters and assure
sufficient detector sensitivity [19].

The data relevant to this investigation must be analyzed without interruption over
substantial amount of time, possibly of the order of several months. Moreover, there is
natural windowing of data as data acquisition is not interleaved with data processing; tl
requires that all processes to be performed run in parallel. In particular, such is the case
the processes performed at each detector branch, consisting of FIR filtering of the nonfir
data stream. Such processing can be conveniently carried out in the frequency domair
cyclic convolution. We focus on the fast convolution method known as the overlap-sa
algorithm (OVS) [17, 15], instead of the overlap-add algorithm, which requires a great
computational effort.

With reference to Fig. 1, the input data sequence is segmented into blocks of len
I; the block Mseg with lengtim = | + w — 1 is formed by addingv — 1 points of the

in data stream

1 data 1 data | data
w-l Msegl
ZETOS|
v Mseg2 I
_¢ Mseg3
\3 Osegl
points
.\'.V?l 2 Oseg2
&ng]_ Oseg3
out data stream
1 data 1 data 1 data

FIG. 1. Data segmentation in the overlap and save method.
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Control

Register Lenght signal Operation controlled
A=Accumulator (n) | Transter B to A
B=Input Buffer (1) 2 Transter O to tail(A)
F=Filter (D] F 3 Transter head(A) 10 O
O=Overlap  (w-1) 4 Compute FFT

5 Multiply term by term

6 Compute IFFT

7 Output L points

oul

FIG. 2. Hardwired control unit for the convolution by overlap-save.

previous block to the current one. The block Oseg is the IDFT of the sequence obtained
pointwise multiplying the DFT of Mseg and the DFT of the filter sequénee, w), which

is computed once and for all. The lasiamples of the block Oseg represent the convolution
output data for the current cycle.

Amodular design technique is applied for the bank of filters realization; a possible scher
of a hardwired control unit for the convolution is depicted in Fig. 2. Note that the kizes
w, andn of the memory registers depend on the branch we consider; the registerd
B contain temporary data, whilE and O contain respectively the samples of the filter
transform and the data to be overlapped.

By replicating the registers and O, several convolutions can be performed by a single
control unit. This is the modular approach we exploit in a distributed detector algorithm 1
be detailed later.

To measure the time complexity of a method, we consider the number of operations
volved in the processing of a single input sample—we call it ISC (input sampls
complexity)—instead of the classic one based on RAM [2],

The basic floating-point operation (FLOP) count is that referred to an FFT performed c
n complex points, on-FFT for short. Although the exact count changes slightly, dependinc
on the specific FFT routine, it is, in particular, for the radix-2 algorithm (that we assum
from now on) in the orde©(nlog, n)[1].

Lettingn =1 + w — 1, the ISC of the OVS algorithm is

C(n) = (2nlog, 2n)/I (13)
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[17] and if we assumé = kw (K integer), so thah >~ w(k + 1), the resulting ISC is
O(log, w). With such assumptions the frequency domain convolution is more efficient the
in the time domain, whose ISC is obvioush(w).

3.2. Optimization over the Number of Operations

Summing up, each branch of the filter bank performs a convolution, a square modul
operation, and a search for a maximum. The main contribution to the complexity com
from the convolution.

We now deal with the optimization of the OVS algorithm, that is with the minimization
of the ISC with respect ta.

Let us consider a certain valuewf hence a given branch in the bank, and assumev
for the sake of efficiency. Let us also assume 2° with b an integer to allow for a radix-2
FFT algorithm.

When written in terms ob, the ISC (13) becomes

20+D(p 4+ 1)

Cb,w) = B w1

(14)

In Fig. 3 we present several plots 6fb, w) versusbh, each plot corresponding to a
different value ofw. Each plot starts at the lowest valuetofor thatw, by, Say, which is

Biow(w) = [log,(2w — 1)1, (15)

where[x] denotes the smallest integer greater than or equalltet us denote bfpop(w)

the values ob for whichC(b, w) achieves a minimum. By comparidgbep:, w) (denoted

by stars in Fig. 3) witlt (bow+ 2, w) (denoted by circles in Fig. 3), we see that a reasonable
approximation folbgp:, assumed below in the paper, is

bopt(w) = bow(w) + 2 = |—|092(2w -D1+2 (16)

100

70F

C(b.w)

1.1e4

5.0e3
401

12 14 16 18 20 22 24 26 28 30 32
b

FIG. 3. C(b, w) versush for several values of the parameter
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FIG. 4. C(w) versusw.

and, hence, with the obvious notation

2(Iogz(2w—lﬂ+3(|'|og2(2w -D1+3

C(w) = C(bopt, w) = oG, @u-D1+2 — 3 4 1

(17)

The functionC (w) is shown in Fig. 4; it increases with in all the intervals in which it
is continuous, while the discontinuities are due to the ceiling operators.

Notice also that the space complexity is minimumboce by, and that at each increase
of b by one unit, the buffer size doubles.

Now we consider the numerical round-off error deriving from the FFT algorithm for large
values ofn; it can be estimated by Theorem 1 in [18]. For larger valuas wfe have FFTs
in the order ofn ~ 10° points, and the relative error increasesog, n). Using single
precision arithmetic, the relative error is less than®@vhile using double precision it is
less than 10'*. These error values seem acceptable.

3.3. Resource Requirements for Real-Time Detection

We already stressed that the FFT of the filiém, w) can be performed off-line. The
time 7 (w) required to process a single data point on a single branch is then inverse
proportional toF, the maximum number of floating operations per second that the machir
can achieve (FLOPS), and directly proportional to the complexity of the algotittam.
Thus, introducing a factopr to take into account the effects arising from the program-—
computer coupling (neglected in the previous theoretical analysis), we have

In Appendix A the following bounds are derived:
21
T(w) > TM(4+ log, w) (18)

23
T(w) = =256+ 1og ). (19)
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In a subsequent section we show how the value ofianges over different machines, as
well as for different values of.

Suppose now that our bank of filters contaiis = (wmax— wmin)/ Aw branches and that
the computation is performed sequentially. Let us denot@&gythe time required for the
overall processing of a single input point; henZgs = >, 7 (w), where the summation
runs over theNF values ofw. Then the real-time requirement is

Ine < t¢ (20)
and, in turn, using the bound (19), it implies
F>23f) uE+log,w). (21)

With w € [5 x 10°, 1.44 x 10'], Aw = 240 henceNF ~ 60000, andu = 1, f. =
1 KHz, we getF = 3.8 GFLOPS (the lower bound (18) yieltis= 3.3 GFLOPS).

Finally, the amount of memory locations MEM required for the problem at hand i
evaluated. As shown in Appendix B, the following bounds can be obtained:

MEM > 12wr2nax_ wrznin
- Aw

MEM < 24wr%1ax_ wrznin
- Aw
Under the assumptions listed below Eg. (21), the memory resources required are estim;
in the range 82 x 10** < MEM < 1.66 x 10'* bytes.

The current market already offers several massively parallel processors [6] achieving
theoretical power of 3.8 GFLOPS derived above for the detection over the full mass ran
aggregate main memory of several GBytes, and RAID (redundant array of inexpensi
disks, used for parallel file systems) mass storage of tens of TBytes. However, acquiri
one such machine would require at the moment an enormous investment. This considera

motivates our further investigation of parallel implementation.

4. DESIGN AND ANALYSIS OF A PARALLEL DETECTION ALGORITHM

In this section we describe the steps involved in the design of the detection algorith
First the reasons for the choice of the network of workstations and then the parallel
gorithm are introduced; several constraints arising from such architecture are examin
The computation in (12) is decomposed across the workstations in such a way to minim
communications and to meet the requirement (20). To take into account such a constr:
we characterize the parallel algorithm, evaluate the performance on different workstatio
and then propose a suitable domain decomposition strategy. The performance of the par
machine has to be measured before execution. This is a general approach which can be
both for a network of workstations and of parallel computers different from that used in ot
experimentation.

4.1. The Parallel Detection Algorithm

Our approach, motivated by the current availability of different high performance work
stations connected with an Ethernet network, is to distribute the computation over seve
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FIG. 5. Processes of the bank of filters.

such workstations. The price to be paid is the lesser mass range to be explored. Given
values ofwmin andAw of the setr in Eq. (12), the value ofvnax can be chosen depending
on the aggregate computational power of the workstations. Such an approach would be
resist obsolescence when more efficient software and hardware tools for FFT computat
are developed.

The sequential method for the detection of GW we have outlined computes a multip
kernel convolution of a nonfinite data stream. The filtering computations are independent
each other and can evolve concurrently. In order to implement it on a network of comput
systems interconnected with the Ethernet network, we have to “parallelize” the algorithr
The parallel algorithm is designed for a distributed memory parallel architecture and consi
of several computational processes communicating by message-passing [7]. It is obtai
by the decomposition of the-domain in Eq. (12), which just describes concurrent filtering
tasks with different values ab.

Figure 5 shows the structure of the processes for the bank of matched filters. Adjac
branches of the bank can be grouped in a single process callatker processwhich
cyclically performs the computation of a branch as the data are availabl®Hleé the
number of heterogeneous workstations, on each of which we allocate a worker proce
We replicate on a worker, according to the modular approach described in Section 3.1,
filter and the overlap buffers for each branch and share the other data structures for sax
memory space. The algorithm requires that data be exchanged between each filter task
a front-end process, which sends blocks of the input data to all of the computers, colle
the data of local maxima, and performs the statistical test.

PVM (parallel virtual machine) [9] has been used as the message-passing environment
implementing the detector algorithm because of its stable interface with high-level languag
and portability across different computers. In PVM the tasks communicate by an efficie
low-level infrastructure that uses standard network protocols and the data representa
XDR. Fault tolerant capability [12] and process migration [3] can be provided to PVM
augmenting the application features. PVM, as nearly all message-passing environme
does not guarantee the timing of message-passing operations.

Ethernet is appropriate for interconnecting tens of workstations for such application
but several factors (e.g., access collisions) degrade the theoretical Ethernet performal
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Due to the limits of the network, a single filtering task cannot be further decomposed b
must be executed on a single computer in order to minimize the communication needs
to guarantee the necessary bit-rate. Adjacent branches of the bank can be computed
worker process using the same data received from the front process.

The bit-rate involved in forwarding the input data (4 bytes/sample) to all worker process
is 32PE f.. For f; = 1 KHz, such rate is consistent with the Ethernet capacity (nominally
107 bps) for values oPE up to a few hundreds. Moreover, according to [23], describing
the communication overheads introduced by PVM over Ethernet, the point-to-point cor
munication time of a messadg bytes long ig.o(Q) = s+ I'Q, wheres is astartupterm
andT is acost per bytderm. Then the front-end process has to send the data packets (
Q/4 samples) to all worker processes with a rate accordiniy,tso PE t,,(Q) < t.Q/4.

By choosingQ such thas « I'Q, we getPE < 1(4I'f.), or we can use a virtual machine
with no more than 100 workstations.

In each worker, the delay introduced by the network is made up by a queue, whi
buffers the data incoming from the front-end process. In such way the computation
the available data is completely overlapped with the communication of new data upon t
Ethernet network.

The timing correctness of the real-time detection requires that, given a number of inf
samples, the processing time has to be not greater than the acquisition period. To
end, we set the execution time of a worker process, or stated otherwise, we determ
how many branches of the bank a single machine is able to process under the real-t
constraint. We obtain @ecompositiorfunction which maps the computer executing a
worker process to the number of filters the worker can execute; this issue is related to
algorithm performance discussed in the next section. Now we give a pseudocode descrip
of the parallel algorithm.

BANK_OF_FILTER (int PE+1, int T, float wmin, float Deltaw).
1l.fori =2toPE+1do

(a) spawnon theith processor a queue process

(b) spawnon theith processor a worker process

(c) sendto theith worker process an info record with the range of values td be
processed

2.while (true)
(a)while (k< Tf)
i. generatehekth data point
ii. broadcasta packet ofQ data to queue processes
(b) receivethe current maximum from the workers
(c) test the maximum over, andw with the value ofa

The worker algorithm can be described by the following pseudolanguage:

WORKER( )
1. receivethe info record with the range of valueswfe (w;, w») to be processed
2.while (true)
(a)for w = w; to w, stepAw do
i. receive ldata points of a segment to be processed
ii. overlapw — 1 data points from the previous segment
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iii. computeFFT
iv. multiply the transformed data with the template filter
V. computeFFT—1
vi. on the firstl data compute the module and find the maximum aoyer
vii. each Tf. pointssendthe current maximum to the processNK _OF_FILTER

4.2. The Algorithm Performance

The performance of a parallel algorithm for distributed memory systemspidtantical
processors is generally analyzed by comparing the execution times of the program deri
from the algorithm to its sequential version, having fixed the size of the input data and tl
number of processors used [2].

Let T, be the time required to execute the program witidentical processors. We can
introduce two classic performance parameters, the spegduog the efficiencyg, where

S=Ty/T,, E=S9/p. (22)

Let f. T be the amount of data (the same for each filter) to be procesg8dTin; then the
sequential execution time is

T = fcT Z T (w).

We assume now that a decomposition of thelomain, such that each worker processes
fc T data in the same time, can be made. In the following we show the approach aimed
realize such domain-decomposition for our real-time problem. As the communication
the data over Ethernet overlaps with the computation, the parallel execution time is

To=Ti/p+ (s + T fcTINFy,

wheres, andl' are respectively the startup and the cost per byte of communication betwe
two processes coallocated on the same processdlnis the maximum number of filters
in a worker. The speedup can be expressed as

p

= 1+ [(s+ Tt T)NF, p/T1]7 @3)

where in the square brackets there is a penalty factor to the linear speedup.
If we consider now a heterogeneous system [5] WHdifferent processors (or computers
as in our case), the speedup can be defined as

_ Teg (24)
max(Td, .., TPE)

whereTseqis the lowest time of the complete serial execution on a single processor of tf
heterogeneous system aff) is the time of the concurrent execution of ilte decompo-
sition. The speedup and efficiency in (22, 24) are classical performance parameters suit
when the goal is to solve a large parallel application by several cooperating processors.

In some applications, such as real-time detection, the parallel execution time is a proble
specific requirement. The performance parameters defined above seem inappropriate in
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a case, because the time constraints of the problem are disregarded. These parameters
fact significant, provided that there exists a single processor among the processing elem
performing the complete serial computation ofgf data in time less tham and a task
decomposition compatible with the same time constraint.

The definition (24) can nevertheless be used as a starting point for a different appro:
to performance evaluation, which provides also a task decomposition complying with tl
time constraint.

4.3. A Different Approach to Performance Evaluation: The Grain Parameter

Usually the terngrain refers to the parts resulting from the decomposition of the domair
associated with a problem [7]. We introduce in this section a Grain parameter represent
the number of branches of the bank that a single processing element is able to process, g
the real time requirement (20).

The optimal load balance in (24) is obtained when TH&’s are all equal. This in-
volves the solution of an optimal assignment problem in which the maximum workloa
be assigned each worker matching the real-time constraints. The resulting valwes o
assigned to a worker define its Grain. In our case this ideal condition can be well appro
mated assigning each workesaitableset of branches (i.e., values o} which define the
Grain.

However, we adopt a simplified setup. Let us consider the ratio

T Ft
Tw) pCw)

G(w) = (25)

As 7 (w) is approximately constant whemranges upon severalw, we can usé&(w) as
the number of adjacent branches in the neighbous tifat a single workstation is able to
process in real time.

We remark that in such a setup the Grain of a worker depends upon the vatuanaf
the power of the computer on which the worker is spawned. This approach requires that
performances of all machines in the network be measured prior to execution (see Eq. (
in the next section).

Notice that if the number of branches assigned to any of the workers is larger than (2
the real time constraint is not satisfied. On the other hand, the lower the number of branc
assigned to the workers, the larger the idle times.

Using the results in Section 3.3, we get (Appendix A)

Ftc
G - 0=
(w) = 2.3u(5+ log, w)
Ftc
CW) = @t iogyw)

Figure 6 shows the values & versusw, assuming as nominal valués = 10’ FLOPS
andu = 1.

The following section is devoted to an experimental assessment of the analytical rest
just derived.



DETECTION OF GRAVITATIONAL WAVES 29

280

260

240}

220

G(w)

200} --

180

140

FIG. 6. Theoretical value of Grain versus.

4.4. Experimental Results on Unix Workstations

The testbed used is a network of high performance workstations, SUN, DEC, and IBI
running under a Unix operating system. Our tests consist of measuring on the FFT rout
the actual value of

10’ FLOPS

L=u S

We define such a global parameter, including the valué ahdu, since different bench-
marks and FFT routines gave too different values to be useful at the design stage. Lett
Gact = G/L we get the value to be used for the grain size assignment for each machi
configuration.

To measure the nonideal factor we assume

_ Trw)10

Cw) ’ (26)

whereT; (w) is the experimentally measured value of the processing time for a single da
point over thaw-value branch. The experimental data consists of measdrfogl6 values

of w in the range [5, 170] s. We implemented the bank and the meastifeafusing the
fourl C routine from [16] over the machines A, B, C, whose characteristics are summariz
in Appendix C.

It turns out that the value of deviates sensibly from a constant value. The reasons fo
such different behavior reside in the use of the UNIX multitasking operating system, tt
memory caching management, the memory paging, functional hardware units, compi
optimization features, and so on. We adopt in our investigation the linear approximatic
L(w) = o + yw, according to the minimum square criterion. Table 1 shows the numerice
values ofu andy.

Figure 7 shows for each machine the 16 experimental ploiS(af) and the related
approximating straight line. We can see that the machines with small memory size pres
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TABLE 1
Values of Intercept and Slope Coefficient
for the Linear Approximation of L£(w)

Machine o 14
A 19.49 327 x 10°°
B 5.75 77 x 107
C 4.88 60 x 10°°

a step discontinuity in correspondence with a valuevdbr which the execution of the
computational process requires virtual memory. Then a better approximation could
obtained by adopting two different linear approximations before and after the use of tl
virtual memory.

The plots related to small valueswfof the machine C (having the larger cache memory)
denote a significant caching effect that decreases the valfievith respect to the approx-
imating straight line, which otherwise fits all other data plots. In fact, the computation:
process uses the large main memory, avoiding the paging times introduced by the virt
memory management.

Using the constant spacing ofw = 0.24 s and a network of 10 workstations for each
type A, B, and C for a total of 30 machines, the range (5, 179.7) sis covered. In Table 2
is summarized the number of branches allocated for each workstation type. The branc
are allocated first over the C workstations, then over the A type and then over the B typ

As afinal remark, we note that the parallel applicaticstalablen the sense that a larger
problem size (range af) can be addressed by a larger number of processors. However, t
number cannot exceed the bound due to Ethernet network issued in Section 4.1. Wher
workstation is able to providé,. > 1, a single convolution has to be performed in parallel

25

non-ideality factor
- n
o =]

-
(=]

w x10*

FIG. 7. Experimental values of the paramef&w) versusw for several machines.
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TABLE 2
Branch Allocation over a Network
of 30 Workstations

Workstations No. of branches
10type A 100
10 type B 313
10type C 316
Whole network 729

(using a dedicated interconnection network), because the real-time constraint cannot
satified.

5. CONCLUSIONS

In this paper the problem of detecting gravitational waves of chirp type is addresse
The classical statistical theory of signal detection yields a bank-of-filters structure for t
detector, but the number of filters in the bank turns out to be very large (in the ordet of 1
filters). This task is unachievable by a single serial machine.

Our goal is to design a run-time parallel detector algorithm based on the bank-of-filter
We introduce, after algorithm characterization and performance evaluation, the so-cal
Grain parameter representing the number of branches of the bank that a single wo
station is able to process, given real-time requirements. The parallel application sca
over a network of workstations connected via an Ethernet network in the sense that
larger the aggregate computational power of the parallel machine, the larger is the m
range.

We fix the lower value of mass and the spacing among filters, as more filters are locat
in the lower part of the mass range. Although the number of workstations for full mas
range seems to be too large for practical implementation, we stress that our results repre
a worst case for (at least) two reasons. First we deal with the white noise case, in whi
the Aw is the smallest. In fact, our first investigations in the colored (VIRGO-like) noise
indicates that such spacing increases approximately by an order of magnitude (a decre
of an order of magnitude in the number of filters). This is in agreement with the results «
[22] for their different setup.

The second reason is our assumption that the range of physically relevant mass parame
is (0.25, 30) solar mass. The smaller the range the smaller is the number of allowable sw
times and, hence, the number of filters to be implemented.

As the presented experimental results are bounded to valués tife range of (5, 180) s,

a whole range test must be performed to validate (or probably increase) the rough ador
linear approximation using a larger number of workstations. We have shown that su
approximation is true also for large valuesroif the workstation memory is large.

Moreover, we carried out only an optimization over the number of operations. When tt
value ofw becomes too large, another approach is to perform a joint optimization wit
respect to the number of operations and the memory requirements. To this end the w
recently suggested in [4] should be of some interest. This is a topic of current work.
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Finally, we stress that the bank of filters is a real-time computation intensive applicatic
whose nature is appropriate for testing the next generation of message-passing environm
and real-time distributed operating systems for parallel architectures.

APPENDIX A: THE SINGLE-BRANCH COMPLEXITY

In this section we give simple bounds for the value of the complexity of a single branc
of the filters bank. For

Bow = [log,(2w — 1)]
n = 2Powt2 — 4 Pow
l=n—w+1
C(w) = ? log, 2n
we get
bow = [10gy(2w — 1)] = logy(2w — 1) + 8 @7)
with 0 < § < 1. With simple algebraic developments we get

_ 822w —1[3+ 5+ log,(2w — 1)]

Cw) 4202w—-1 —-w+1

16
where the conditiom > 1 has been exploited. Moreover, ag (%— 27%) € (2.1, 2.3) it
results that

2.1(4+log, w) < C(w) < 2.3(5+ log, w). (29)

APPENDIX B: THE SPACE COMPLEXITY

In this appendix we investigate the memory requirements for the implementation of tl
bank of filters. To simplify the calculations we suppose that the structure of Fig. 2 is full
replicated for each branch and assume that each memory location requires the same nur
of bytes.

The number of memory locations for each branchnista + (w — 1) = 3n, i.e,

12 Prow = 12 2M10%w=11, (30)

Assuming the bounds tg in Appendix A, we get the lower and upper bounds of MEM

NF-1
242 Z (Wmin + 1 Aw) (31)

i=0
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Characteristics of the Machine in the Testbed

Machine

A

Model

Cpu/Arch.

Clock (Mhz)
Main Mem (MBY)
O.S. version
Manifacturer
Cache (ist./d)

Machine

SPARCstation 10
SPARC/sun4
100
32

SunOs 4.1.3
Sun

64K

B

Model

Cpu/Arch.

Clock (Mhz)
Main Mem (MBY)
O.S. version
Manifacturer
Cache (ist./d)

Machine

DEC 3000-600
DEC 21064/AXP
175
64

DEC OSF/13.2
Digital

2M

C

Model

Cpu/Arch.

Clock (Mhz)
Main Mem (MBY)
O.S. version
Manifacturer
Cache (ist./d)

RS/6000-3AT
Power2

59

32

AlX3.2.5
IBM

32k, 64k

respectively fos = 0 ands = 1. If NF > 1 we easily get

MEM > 12wﬁ"|ax_ wr2r1in
- Aw

MEM < 24wﬁ1ax_ wr2r1in
- Aw

APPENDIX C: CHARACTERISTICS OF THE TESTED MACHINES

We summarize in Table 3 the main characteristics of the three machines named
B, C.
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