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We deal with the detection of gravitational chirp signals among noisy data, where
the reception and the detection are piped and run in parallel. We consider the classical
theory of signal detection, which yields a detector with a “bank-of-filters” structure.
We investigate distributed network computing in order to implement such a detec-
tor by heterogeneous high performance workstations interconnected via an Ethernet
network. The goal is to design a distributed detector running on a number of avail-
able workstations. The computation is decomposed across the workstations in such
a way to minimize communications and to match the acquisition rate. Our approach
is general and can be used for networks of workstations different from those used
in our experimentation. We point out that the classical performance analysis seems
inappropriate if applied to real-time detection by heterogeneous distributed systems,
because the execution time requirements are disregarded. To take into account such
constraints we characterize the algorithm, evaluate performances on different work-
stations, and propose a task decomposition strategy assigning the appropriateGrain
to each workstation. c© 1998 Academic Press
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1. INTRODUCTION

Gravitational wave (GW) detection has become an important experimental research topic.
Currently there are several projects in progress aiming to the realization of an interferometric
gravitational antenna for the detection of GW. In particular the scope of the Italian–French
VIRGO project [27] is the realization of a 3-km baseline interferometric antenna.
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In order to detect the emission of GW, we need a suitable filtering algorithm for real-
time processing of the data from the interferometric gravitational antenna. Several detection
algorithms have been proposed in [24], and a parallel implementation of a bank of filters
on a transputer-based computer has been discussed in [21]. More recently, a survey of a
number of statistical signal processing approaches to the detection of GW signals has been
published in [28]. Finally, the topic of noise level estimation in interferometric antennas
has been addressed in [13].

In this paper we consider the processing algorithm of the signals expected from a grav-
itational interferometer. We discuss an algorithm based on thelikelihood ratio (LR) test
and the complexity of the resulting bank of matched filters; then we determine the memory
and the computational power required for processing data with the same acquisition rate.
Such hardware resources are not available on a serial computer; therefore we adopt a dis-
tributed approach in which several branches of the bank are processed over a single high
performance workstation in order to implement a detector prototype; a dedicated parallel
architecture is suitable to implement the detection over large parameter ranges and long
runs of experiments.

The paper is organized as follows: in Section 2 the problem of the detection of a gravi-
tational signal with chirp-like waveform is mathematically formulated. Section 3 describes
the computational approach of the matched-filters bank and some aspects of the algorithm
implementation as optimization, complexity analysis, evaluation of the necessary comput-
ing resources. Section 4 deals with the design of the distributed algorithm, the performance
issues emphasizing the real-time constraints and the domain decomposition function, the
model of the software performance on different workstations with UNIX operating system.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

In this section we briefly describe in a mathematical framework the steps involved in
the detection of a GW signal. First the signal model, which defines the noise-free antenna
response to a gravitational wave, is introduced. Then a hypothesis test is employed to detect
the presence of a GW signal in the noisy input; according to the Neyman–Pearson approach,
we should compare the likelihood ratio (LR) with a threshold value, but our signal, and
consequently the LR, depends upon some unknown parameters. Thegeneralized likelihood
ratio test(GLRT) approach requires that the unknown parameters be their maximum like-
lihood estimates, which jointly maximize the LR. We impose necessary conditions for the
maximum of the LR over all unknown parameters of the signal. It results that two parameters
only can be analytically evaluated so that substitution into the LR can be performed; the
maximum over the other two parameters can be found only numerically by an exhaustive
search.

2.1. The Signal Model

An interferometric gravitational antenna potentially explores a frequency band from
about 10 Hz to a few KHz and provides an accurate control of seismic, thermal, and photon
noise. Among several types of GW signals, a class of chirp waveforms is expected.

The chirp waveform is emitted by a binary star system. Neglecting tidal effects, the
eccentricity of the orbit, the Doppler effect due to earth motion and the relativistic correc-
tion, the noise-free antenna response to a GW that is the useful signal can be cast in the
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form [20, 14]

s(t) = I A(t, ta, τ ) cos(β(t, ta, τ ) + φ)

t ∈ (ta, ta + τ), (1)

where

A(t, ta, τ ) = τ−1 f −2
0

(
1 − t − ta

τ

)−1/4

,

β(t, ta, τ ) = 16

5
π f0τ

[
1 −

(
1 − t − ta

τ

)5/8
]
.

Here I is an amplitude factor depending upon the amplitude and polarization of the wave,
and from the geometry of the system,f0 is the minimum frequency detectable by the antenna
(in VIRGO f0 = 10 Hz),φ is the initial phase, andta is the arrival time. The “sweep time”
τ represents the signal duration, and in turn depends upon the “mass parameter”M of the
binary system and uponf0, through

τ = 3

100−8/3

(M
M¯

)−5/3

f0
−8/3 s, (2)

whereM¯ is the solar mass unit [20, 11].
The chirp signal in the form (1) is an amplitude and frequency modulated signal, the

instantaneous amplitude and frequency being monotonically increasing functions. At the
instantta + τ in which the system collapses (collapse time), both the instantaneous am-
plitude and frequency diverge. In fact, the instantaneous frequency of the chirp, which is
related to the revolution frequency of the binary system, is [25]

f (t) = f0

(
1 − t − ta

τ

)−3/8

Hz. (3)

The GW signal has, therefore, a known shape, but it depends upon the values of the un-
known parametersI , φ, ta, τ . Moreover, the signal provided by the interferometric antenna
includes noise from several sources in addition to, possibly, the useful signals(t).

2.2. Statistical Detection in the Presence of Additive White Gaussian Noise

We introduce a statistical hypothesis test [8] to detect a gravitational wave in the noisy
signal received by the antenna.

Letting(0, T) be the observation interval andv(t) be the signal received by the antenna in
the observation interval, the problem can be formalized as the choice between two alternative
hypothesisH0 andH1 [10]:

H1 : v(t) = s(t) + n(t)
H0 : v(t) = n(t).

(4)

In the following we suppose thatn(t) is a sample function from a Gaussian white process
with power spectral densityN0/2.1

1A whitening filter can be employed if the receiver is subject to a colored noise (see [10]).
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The LR for the problem at hand can be written as [10]

3[v(t),Θ] = exp

{
2

N0

∫ T

0
s(t,Θ)v(t)dt − 1

N0

∫ T

0
s2(t,Θ)dt

}
, (5)

whereΘ is the signal parameter vectorΘ = (I , φ, ta, τ ) .
Under the Neyman–Pearson criterion, that is to maximize the probability of detection

(Pd) for fixed false alarm probability (Pf a), the optimum hypothesis test would be, assuming
that the useful signal be known,

3

H1
>
<
H0

λ.

As the useful signals(t) = s(t,Θ) depends upon unknown parametersΘ, we use the
GLRT approach [26], which consists in substituting the unknown signal parameters with
their maximum likelihood estimates over the datav(t). We search for the values of̂Θ that
jointly maximize the likelihood ratio, that is,̂ΘML such that:

3(v(t), Θ̂ML ) := max
I ,φ,ta,τ

3(v(t), I , φ, ta, τ ). (6)

The hypothesis test then becomes

max
I ,φ,ta,τ

3(v(t), I , φ, ta, τ )

H1
>
<
H0

λ. (7)

In order to remove the parametersI andφ from (7), we impose the necessary condition
for the relative maximum, obtaining the system of equations

∂

∂ I
3(v(t), I , φ, ta, τ ) = 0

∂

∂φ
3(v(t), I , φ, ta, τ ) = 0

∂

∂ta
3(v(t), I , φ, ta, τ ) = 0

∂

∂τ
3(v(t), I , φ, ta, τ ) = 0

which in fact can be solved with respect toI andφ. On the other hand, the functional (7)
is highly multimodal with respect tota andτ ; hence, a search must be carried on. The test
can be recast as

max
ta,τ

R2(ta, τ )

N0Ä(τ)

H1
>
<
H0

λ, (8)

where

R2(ta, τ )

Ä(τ)
=
∣∣∣∣ ∫ T

0

A(t, ta, τ )√
Ä(τ)

ejβ(t,ta,τ )v(t)dt

∣∣∣∣2
is the square modulus of the cross-correlation of the “raw data”v(t) with the complex and



                
P1: MHL

January 11, 1998 23:47 APJ/Journal of Computational Physics JCP5857

DETECTION OF GRAVITATIONAL WAVES 19

normalized expected signal. The termsA(t, ta, τ ) andβ(t, ta, τ ) were defined in Section 2.1.
In the square modulus of the previous expression, we can recognize a convolution between
v(t) and a suitable complex filter matched tos(t), having impulse response

h(t, τ ) = A(ta + τ − t, ta, τ )√
Ä(τ)

ejβ(ta+τ−t,ta,τ ), (9)

wheret ∈ (0, τ ). Moreover, we get

Ä(τ) =
∫ T

0

s2(t,Θ)

I 2
dt ≈ 1

f 4
0 τ

(10)

and the energy of the signal (1) isE = I 2Ä = I 2/( f 4
0 τ).

3. THE BANK-OF-FILTERS DESIGN

In this section we describe the design of the algorithm, and the requirements of compu-
tational resources for real-time detection.

3.1. The Computational Approach

In order to numerically implement the test, we have to discretize the problem. For this
purpose we sample the input signalv(t) at a suitable ratefc = 1/tc. As the spectrum of
the GW chirp (in the stationary phase approximation) assumes its maximum atf = f0 and
decays likef −7/6, fc = 1000 Hz is an appropriate choice.

The values of the sweep timeτ depend on the physical values for the mass parameter
and f0. Using the range of mass parameter given in [20], the “full range” in our setup is
τ ∈ (5 s, 1.44× 104 s).

In the discrete time we substitute the arrival timeta and the sweep timeτ with adimen-
sional discrete valuesna = ta fc andw = τ fc, wherena ∈ σ = {0, 1, 2, . . . , (T − 1) fc},
w ∈ α = {wmin, wmin + 1w, wmin + 21w, . . . , wmax}. Moreover, we replace the filter
h(t, τ ) with the numerical equivalent

h(m, w) = tch(mtc, wtc). (11)

The test (8) can then be written in the form

max
(na∈σ,w∈α)

|y(na, w)|2
H1
>
<
H0

λ, (12)

where

y(na, w) =
(T−1) fc∑

m=0

h(m, w)v(na + w − 1 − m)

is the convolution at timena + w, between the input sequencev(m) and the FIR filter
h(m, w).

The detector decides about the presence of a gravitational wave at intervals ofT seconds
(decision interval), until the processes are stopped at an undefined time. This implies that
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in each decision interval, a double maximization overna andw must be performed on a
wide grid of values. We choose to search first for maxna |y(na, w)|2 = |y(n̂a, w)|2, and
then to search for maxw|y(n̂a, w)|2 = |y(n̂a, ŵ)|2. In such a way the detector has been
decomposed as abank of filtersstructure, each filter being tuned to a specific value ofw

(hence ofτ ) according to (11).
The distance between the values ofw of two adjacent filters is1w = 1τ fc; an important

result is that such spacing can be chosen approximately constant [20, 19]. If1w were equal
to 1 (the ideal minimum spacing), searching over the full range ofτ would require about
107 filters. As this complexity is unaffordable a compromise must be taken. In the following
we assume1w = 240; such a value reasonably bounds the number of filters and assures a
sufficient detector sensitivity [19].

The data relevant to this investigation must be analyzed without interruption over a
substantial amount of time, possibly of the order of several months. Moreover, there is no
natural windowing of data as data acquisition is not interleaved with data processing; this
requires that all processes to be performed run in parallel. In particular, such is the case of
the processes performed at each detector branch, consisting of FIR filtering of the nonfinite
data stream. Such processing can be conveniently carried out in the frequency domain by
cyclic convolution. We focus on the fast convolution method known as the overlap-save
algorithm (OVS) [17, 15], instead of the overlap-add algorithm, which requires a greater
computational effort.

With reference to Fig. 1, the input data sequence is segmented into blocks of length
l ; the block Mseg with lengthn = l + w − 1 is formed by addingw − 1 points of the

FIG. 1. Data segmentation in the overlap and save method.
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FIG. 2. Hardwired control unit for the convolution by overlap-save.

previous block to the current one. The block Oseg is the IDFT of the sequence obtained by
pointwise multiplying the DFT of Mseg and the DFT of the filter sequenceh(m, w), which
is computed once and for all. The lastl samples of the block Oseg represent the convolution
output data for the current cycle.

A modular design technique is applied for the bank of filters realization; a possible scheme
of a hardwired control unit for the convolution is depicted in Fig. 2. Note that the sizesl ,
w, andn of the memory registers depend on the branch we consider; the registersA and
B contain temporary data, whileF and O contain respectively the samples of the filter
transform and the data to be overlapped.

By replicating the registersF andO, several convolutions can be performed by a single
control unit. This is the modular approach we exploit in a distributed detector algorithm to
be detailed later.

To measure the time complexity of a method, we consider the number of operations in-
volved in the processing of a single input sample—we call it ISC (input sample
complexity)—instead of the classic one based on RAM [2],

The basic floating-point operation (FLOP) count is that referred to an FFT performed on
n complex points, orn-FFT for short. Although the exact count changes slightly, depending
on the specific FFT routine, it is, in particular, for the radix-2 algorithm (that we assume
from now on) in the orderO(n log2 n)[1].

Lettingn = l + w − 1, the ISC of the OVS algorithm is

C(n) = (2n log2 2n)/ l (13)
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[17] and if we assumel = kw (k integer), so thatn ' w(k + 1), the resulting ISC is
O(log2 w). With such assumptions the frequency domain convolution is more efficient than
in the time domain, whose ISC is obviouslyO(w).

3.2. Optimization over the Number of Operations

Summing up, each branch of the filter bank performs a convolution, a square modulus
operation, and a search for a maximum. The main contribution to the complexity comes
from the convolution.

We now deal with the optimization of the OVS algorithm, that is with the minimization
of the ISC with respect ton.

Let us consider a certain value ofw, hence a given branch in the bank, and assumel ≥ w

for the sake of efficiency. Let us also assumen = 2b with b an integer to allow for a radix-2
FFT algorithm.

When written in terms ofb, the ISC (13) becomes

C(b, w) = 2(b+1)(b + 1)

2b − w + 1
. (14)

In Fig. 3 we present several plots ofC(b, w) versusb, each plot corresponding to a
different value ofw. Each plot starts at the lowest value ofb for thatw, blow say, which is

blow(w) = dlog2(2w − 1)e, (15)

wheredxe denotes the smallest integer greater than or equal tox. Let us denote bybopt(w)

the values ofb for whichC(b, w) achieves a minimum. By comparingC(bopt, w) (denoted
by stars in Fig. 3) withC(blow+2, w) (denoted by circles in Fig. 3), we see that a reasonable
approximation forbopt, assumed below in the paper, is

bopt(w) = blow(w) + 2 = dlog2(2w − 1)e + 2 (16)

FIG. 3. C(b, w) versusb for several values of the parameterw.
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FIG. 4. C(w) versusw.

and, hence, with the obvious notation

C(w) = C(bopt, w) = 2dlog2(2w−1)e+3(dlog2(2w − 1)e + 3)

2dlog2(2w−1)e+2 − w + 1
. (17)

The functionC(w) is shown in Fig. 4; it increases withw in all the intervals in which it
is continuous, while the discontinuities are due to the ceiling operators.

Notice also that the space complexity is minimum forb = blow and that at each increase
of b by one unit, the buffer size doubles.

Now we consider the numerical round-off error deriving from the FFT algorithm for large
values ofn; it can be estimated by Theorem 1 in [18]. For larger values ofw we have FFTs
in the order ofn ' 108 points, and the relative error increases asO(log2 n). Using single
precision arithmetic, the relative error is less than 10−5, while using double precision it is
less than 10−14. These error values seem acceptable.

3.3. Resource Requirements for Real-Time Detection

We already stressed that the FFT of the filterh(m, w) can be performed off-line. The
time T (w) required to process a single data point on a single branch is then inversely
proportional toF , the maximum number of floating operations per second that the machine
can achieve (FLOPS), and directly proportional to the complexity of the algorithmC(w).
Thus, introducing a factorµ to take into account the effects arising from the program–
computer coupling (neglected in the previous theoretical analysis), we have

T (w) = µC(w)

F
.

In Appendix A the following bounds are derived:

T (w) ≥ 2.1µ

F
(4 + log2 w) (18)

T (w) ≤ 2.3µ

F
(5 + log2 w). (19)
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In a subsequent section we show how the value ofµ changes over different machines, as
well as for different values ofw.

Suppose now that our bank of filters containsNF = (wmax−wmin)/1w branches and that
the computation is performed sequentially. Let us denote byTNF the time required for the
overall processing of a single input point; hence,TNF = ∑

wT (w), where the summation
runs over theNF values ofw. Then the real-time requirement is

TNF ≤ tc (20)

and, in turn, using the bound (19), it implies

F ≥ 2.3 fc

∑
µ(5 + log2 w). (21)

With w ∈ [5 × 103, 1.44 × 107], 1w = 240 henceNF ' 60000, andµ = 1, fc =
1 KHz, we getF = 3.8 GFLOPS (the lower bound (18) yieldsF = 3.3 GFLOPS).

Finally, the amount of memory locations MEM required for the problem at hand is
evaluated. As shown in Appendix B, the following bounds can be obtained:

MEM ≥ 12
w2

max − w2
min

1w

MEM ≤ 24
w2

max − w2
min

1w
.

Under the assumptions listed below Eq. (21), the memory resources required are estimated
in the range 8.32× 1013 ≤ MEM ≤ 1.66× 1014 bytes.

The current market already offers several massively parallel processors [6] achieving the
theoretical power of 3.8 GFLOPS derived above for the detection over the full mass range,
aggregate main memory of several GBytes, and RAID (redundant array of inexpensive
disks, used for parallel file systems) mass storage of tens of TBytes. However, acquiring
one such machine would require at the moment an enormous investment. This consideration
motivates our further investigation of parallel implementation.

4. DESIGN AND ANALYSIS OF A PARALLEL DETECTION ALGORITHM

In this section we describe the steps involved in the design of the detection algorithm.
First the reasons for the choice of the network of workstations and then the parallel al-
gorithm are introduced; several constraints arising from such architecture are examined.
The computation in (12) is decomposed across the workstations in such a way to minimize
communications and to meet the requirement (20). To take into account such a constraint
we characterize the parallel algorithm, evaluate the performance on different workstations,
and then propose a suitable domain decomposition strategy. The performance of the parallel
machine has to be measured before execution. This is a general approach which can be used
both for a network of workstations and of parallel computers different from that used in our
experimentation.

4.1. The Parallel Detection Algorithm

Our approach, motivated by the current availability of different high performance work-
stations connected with an Ethernet network, is to distribute the computation over several
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FIG. 5. Processes of the bank of filters.

such workstations. The price to be paid is the lesser mass range to be explored. Given the
values ofwmin and1w of the setα in Eq. (12), the value ofwmax can be chosen depending
on the aggregate computational power of the workstations. Such an approach would better
resist obsolescence when more efficient software and hardware tools for FFT computation
are developed.

The sequential method for the detection of GW we have outlined computes a multiple
kernel convolution of a nonfinite data stream. The filtering computations are independent of
each other and can evolve concurrently. In order to implement it on a network of computer
systems interconnected with the Ethernet network, we have to “parallelize” the algorithm.
The parallel algorithm is designed for a distributed memory parallel architecture and consists
of several computational processes communicating by message-passing [7]. It is obtained
by the decomposition of thew-domain in Eq. (12), which just describes concurrent filtering
tasks with different values ofw.

Figure 5 shows the structure of the processes for the bank of matched filters. Adjacent
branches of the bank can be grouped in a single process called theworker process, which
cyclically performs the computation of a branch as the data are available. LetPE be the
number of heterogeneous workstations, on each of which we allocate a worker process.
We replicate on a worker, according to the modular approach described in Section 3.1, the
filter and the overlap buffers for each branch and share the other data structures for saving
memory space. The algorithm requires that data be exchanged between each filter task and
a front-end process, which sends blocks of the input data to all of the computers, collects
the data of local maxima, and performs the statistical test.

PVM (parallel virtual machine) [9] has been used as the message-passing environment for
implementing the detector algorithm because of its stable interface with high-level languages
and portability across different computers. In PVM the tasks communicate by an efficient
low-level infrastructure that uses standard network protocols and the data representation
XDR. Fault tolerant capability [12] and process migration [3] can be provided to PVM,
augmenting the application features. PVM, as nearly all message-passing environments,
does not guarantee the timing of message-passing operations.

Ethernet is appropriate for interconnecting tens of workstations for such applications,
but several factors (e.g., access collisions) degrade the theoretical Ethernet performance.
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Due to the limits of the network, a single filtering task cannot be further decomposed but
must be executed on a single computer in order to minimize the communication needs and
to guarantee the necessary bit-rate. Adjacent branches of the bank can be computed by a
worker process using the same data received from the front process.

The bit-rate involved in forwarding the input data (4 bytes/sample) to all worker processes
is 32PE fc. For fc = 1 KHz, such rate is consistent with the Ethernet capacity (nominally
107 bps) for values ofPE up to a few hundreds. Moreover, according to [23], describing
the communication overheads introduced by PVM over Ethernet, the point-to-point com-
munication time of a messageQ bytes long istco(Q) = s + 0Q, wheres is astartupterm
and0 is acost per byteterm. Then the front-end process has to send the data packets (of
Q/4 samples) to all worker processes with a rate according tofc, soPE tco(Q) ≤ tcQ/4.
By choosingQ such thats ¿ 0Q, we getPE ≤ 1(40 fc), or we can use a virtual machine
with no more than 100 workstations.

In each worker, the delay introduced by the network is made up by a queue, which
buffers the data incoming from the front-end process. In such way the computation on
the available data is completely overlapped with the communication of new data upon the
Ethernet network.

The timing correctness of the real-time detection requires that, given a number of input
samples, the processing time has to be not greater than the acquisition period. To this
end, we set the execution time of a worker process, or stated otherwise, we determine
how many branches of the bank a single machine is able to process under the real-time
constraint. We obtain adecompositionfunction which maps the computer executing a
worker process to the number of filters the worker can execute; this issue is related to the
algorithm performance discussed in the next section. Now we give a pseudocode description
of the parallel algorithm.

BANK OF FILTER (int PE+1, int T, float wmin, float Deltaw).

1. for i = 2 to PE+1 do

(a)spawnon thei th processor a queue process
(b) spawnon thei th processor a worker process
(c) sendto thei th worker process an info record with the range of values ofw to be

processed

2. while (true)
(a)while (k ≤ T fc)

i. generatethekth data point
ii. broadcasta packet ofQ data to queue processes

(b) receivethe current maximum from the workers
(c) test the maximum overna andw with the value ofλ

The worker algorithm can be described by the following pseudolanguage:

WORKER( )
1. receivethe info record with the range of values ofw ∈ (w1, w2) to be processed

2. while (true)

(a) for w = w1 to w2 step1w do
i. receive ldata points of a segment to be processed

ii. overlapw − 1 data points from the previous segment
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iii. computeFFT
iv. multiply the transformed data with the template filter
v. computeFFT−1

vi. on the firstl data compute the module and find the maximum overna

vii. each Tfc pointssendthe current maximum to the process BANK OF FILTER

4.2. The Algorithm Performance

The performance of a parallel algorithm for distributed memory systems withp identical
processors is generally analyzed by comparing the execution times of the program derived
from the algorithm to its sequential version, having fixed the size of the input data and the
number of processors used [2].

Let Tp be the time required to execute the program withp identical processors. We can
introduce two classic performance parameters, the speedupSand the efficiencyE, where

S = T1/Tp, E = S/p. (22)

Let fcT be the amount of data (the same for each filter) to be processed in(0, T); then the
sequential execution time is

T1 = fcT
∑
w

T (w).

We assume now that a decomposition of thew-domain, such that each worker processes
fcT data in the same time, can be made. In the following we show the approach aimed to
realize such domain-decomposition for our real-time problem. As the communication of
the data over Ethernet overlaps with the computation, the parallel execution time is

Tp = T1/p + (sc + 0c fcT)NFw,

wheresc and0c are respectively the startup and the cost per byte of communication between
two processes coallocated on the same processor, andNFw is the maximum number of filters
in a worker. The speedup can be expressed as

S = p

1 + [(sc + 0c fcT)NFw p/T1]
, (23)

where in the square brackets there is a penalty factor to the linear speedup.
If we consider now a heterogeneous system [5] withPEdifferent processors (or computers

as in our case), the speedup can be defined as

S = Tseq

max(T (1),. ., T (PE))
, (24)

whereTseq is the lowest time of the complete serial execution on a single processor of the
heterogeneous system andT (i ) is the time of the concurrent execution of thei th decompo-
sition. The speedup and efficiency in (22, 24) are classical performance parameters suitable
when the goal is to solve a large parallel application by several cooperating processors.

In some applications, such as real-time detection, the parallel execution time is a problem-
specific requirement. The performance parameters defined above seem inappropriate in such
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a case, because the time constraints of the problem are disregarded. These parameters are in
fact significant, provided that there exists a single processor among the processing elements
performing the complete serial computation overfcT data in time less thanT and a task
decomposition compatible with the same time constraint.

The definition (24) can nevertheless be used as a starting point for a different approach
to performance evaluation, which provides also a task decomposition complying with the
time constraint.

4.3. A Different Approach to Performance Evaluation: The Grain Parameter

Usually the termgrain refers to the parts resulting from the decomposition of the domain
associated with a problem [7]. We introduce in this section a Grain parameter representing
the number of branches of the bank that a single processing element is able to process, given
the real time requirement (20).

The optimal load balance in (24) is obtained when theT (i )’s are all equal. This in-
volves the solution of an optimal assignment problem in which the maximum workload
be assigned each worker matching the real-time constraints. The resulting values ofw

assigned to a worker define its Grain. In our case this ideal condition can be well approxi-
mated assigning each worker asuitableset of branches (i.e., values ofw) which define the
Grain.

However, we adopt a simplified setup. Let us consider the ratio

G(w) = Tc

T (w)
= Ftc

µC(w)
. (25)

As T (w) is approximately constant whenw ranges upon several1w, we can useG(w) as
the number of adjacent branches in the neighbour ofw that a single workstation is able to
process in real time.

We remark that in such a setup the Grain of a worker depends upon the value ofw and
the power of the computer on which the worker is spawned. This approach requires that the
performances of all machines in the network be measured prior to execution (see Eq. (26)
in the next section).

Notice that if the number of branches assigned to any of the workers is larger than (25)
the real time constraint is not satisfied. On the other hand, the lower the number of branches
assigned to the workers, the larger the idle times.

Using the results in Section 3.3, we get (Appendix A)

G(w) ≥ Ftc
2.3µ(5 + log2 w)

G(w) ≤ Ftc
2.1µ(4 + log2 w)

.

Figure 6 shows the values ofG versusw, assuming as nominal valuesF = 107 FLOPS
andµ = 1.

The following section is devoted to an experimental assessment of the analytical results
just derived.
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FIG. 6. Theoretical value of Grain versusw.

4.4. Experimental Results on Unix Workstations

The testbed used is a network of high performance workstations, SUN, DEC, and IBM,
running under a Unix operating system. Our tests consist of measuring on the FFT routine
the actual value of

L = µ
107 FLOPS

F
.

We define such a global parameter, including the value ofF andµ, since different bench-
marks and FFT routines gave too different values to be useful at the design stage. Letting
Gact = G/L we get the value to be used for the grain size assignment for each machine
configuration.

To measure the nonideal factor we assume

L = T̂r (w)107

C(w)
, (26)

whereT̂r (w) is the experimentally measured value of the processing time for a single data
point over thew-value branch. The experimental data consists of measuringL for 16 values
of w in the range [5, 170] s. We implemented the bank and the measures ofT̂r (w) using the
four1 C routine from [16] over the machines A, B, C, whose characteristics are summarized
in Appendix C.

It turns out that the value ofL deviates sensibly from a constant value. The reasons for
such different behavior reside in the use of the UNIX multitasking operating system, the
memory caching management, the memory paging, functional hardware units, compiler
optimization features, and so on. We adopt in our investigation the linear approximation
L(w) = α + γw, according to the minimum square criterion. Table 1 shows the numerical
values ofα andγ .

Figure 7 shows for each machine the 16 experimental plots ofL(w) and the related
approximating straight line. We can see that the machines with small memory size present
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TABLE 1

Values of Intercept and Slope Coefficient

for the Linear Approximation of L(w)

Machine α γ

A 19.49 3.27× 10−5

B 5.75 7.7 × 10−6

C 4.88 6.0 × 10−5

a step discontinuity in correspondence with a value ofw for which the execution of the
computational process requires virtual memory. Then a better approximation could be
obtained by adopting two different linear approximations before and after the use of the
virtual memory.

The plots related to small values ofw of the machine C (having the larger cache memory)
denote a significant caching effect that decreases the value ofL with respect to the approx-
imating straight line, which otherwise fits all other data plots. In fact, the computational
process uses the large main memory, avoiding the paging times introduced by the virtual
memory management.

Using the constant spacing of1w = 0.24 s and a network of 10 workstations for each
type A, B, and C for a total of 30 machines, the rangew ∈ (5, 179.7) s is covered. In Table 2
is summarized the number of branches allocated for each workstation type. The branches
are allocated first over the C workstations, then over the A type and then over the B type.

As a final remark, we note that the parallel application isscalablein the sense that a larger
problem size (range ofw) can be addressed by a larger number of processors. However, this
number cannot exceed the bound due to Ethernet network issued in Section 4.1. When no
workstation is able to provideGact ≥ 1, a single convolution has to be performed in parallel

FIG. 7. Experimental values of the parameterL(w) versusw for several machines.
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TABLE 2

Branch Allocation over a Network

of 30 Workstations

Workstations No. of branches

10 type A 100
10 type B 313
10 type C 316

Whole network 729

(using a dedicated interconnection network), because the real-time constraint cannot be
satified.

5. CONCLUSIONS

In this paper the problem of detecting gravitational waves of chirp type is addressed.
The classical statistical theory of signal detection yields a bank-of-filters structure for the
detector, but the number of filters in the bank turns out to be very large (in the order of 105

filters). This task is unachievable by a single serial machine.
Our goal is to design a run-time parallel detector algorithm based on the bank-of-filters.

We introduce, after algorithm characterization and performance evaluation, the so-called
Grain parameter representing the number of branches of the bank that a single work-
station is able to process, given real-time requirements. The parallel application scales
over a network of workstations connected via an Ethernet network in the sense that the
larger the aggregate computational power of the parallel machine, the larger is the mass
range.

We fix the lower value of mass and the spacing among filters, as more filters are located
in the lower part of the mass range. Although the number of workstations for full mass
range seems to be too large for practical implementation, we stress that our results represent
a worst case for (at least) two reasons. First we deal with the white noise case, in which
the1w is the smallest. In fact, our first investigations in the colored (VIRGO-like) noise
indicates that such spacing increases approximately by an order of magnitude (a decrease
of an order of magnitude in the number of filters). This is in agreement with the results of
[22] for their different setup.

The second reason is our assumption that the range of physically relevant mass parameters
is (0.25, 30) solar mass. The smaller the range the smaller is the number of allowable sweep
times and, hence, the number of filters to be implemented.

As the presented experimental results are bounded to values ofτ in the range of (5, 180) s,
a whole range test must be performed to validate (or probably increase) the rough adopted
linear approximation using a larger number of workstations. We have shown that such
approximation is true also for large values ofτ if the workstation memory is large.

Moreover, we carried out only an optimization over the number of operations. When the
value ofw becomes too large, another approach is to perform a joint optimization with
respect to the number of operations and the memory requirements. To this end the work
recently suggested in [4] should be of some interest. This is a topic of current work.
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Finally, we stress that the bank of filters is a real-time computation intensive application
whose nature is appropriate for testing the next generation of message-passing environments
and real-time distributed operating systems for parallel architectures.

APPENDIX A: THE SINGLE-BRANCH COMPLEXITY

In this section we give simple bounds for the value of the complexity of a single branch
of the filters bank. For

blow = dlog2(2w − 1)e

n = 2blow+2 = 4 2blow

l = n − w + 1

C(w) = 2n

l
log2 2n

we get

blow = dlog2(2w − 1)e = log2(2w − 1) + δ (27)

with 0 ≤ δ < 1. With simple algebraic developments we get

C(w) = 8 2δ(2w − 1)[3 + δ + log2(2w − 1)]

4 2δ(2w − 1) − w + 1

≈ 16

8 − 2−δ
(4 + δ + log2 w), (28)

where the conditionw À 1 has been exploited. Moreover, as 16/(8 − 2−δ) ∈ (2.1, 2.3) it
results that

2.1(4 + log2 w) ≤ C(w) ≤ 2.3(5 + log2 w). (29)

APPENDIX B: THE SPACE COMPLEXITY

In this appendix we investigate the memory requirements for the implementation of the
bank of filters. To simplify the calculations we suppose that the structure of Fig. 2 is fully
replicated for each branch and assume that each memory location requires the same number
of bytes.

The number of memory locations for each branch is 2n + l + (w − 1) = 3n, i.e,

12 2blow = 12 2dlog2(2w−1)e. (30)

Assuming the bounds tobl in Appendix A, we get the lower and upper bounds of MEM

24 2δ

NF−1∑
i =0

(wmin + i 1w) (31)
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TABLE 3

Characteristics of the Machine in the Testbed

Machine A

Model SPARCstation 10
Cpu/Arch. SPARC/sun4
Clock (Mhz) 100
Main Mem (MBy) 32
O.S. version SunOs 4.1.3
Manifacturer Sun
Cache (ist./d) 64K

Machine B

Model DEC 3000-600
Cpu/Arch. DEC 21064/AXP
Clock (Mhz) 175
Main Mem (MBy) 64
O.S. version DEC OSF/1 3.2
Manifacturer Digital
Cache (ist./d) 2M

Machine C

Model RS/6000-3AT
Cpu/Arch. Power2
Clock (Mhz) 59
Main Mem (MBy) 32
O.S. version AIX 3.2.5
Manifacturer IBM
Cache (ist./d) 32k, 64k

respectively forδ = 0 andδ = 1. If NF À 1 we easily get

MEM ≥ 12
w2

max − w2
min

1w

MEM ≤ 24
w2

max − w2
min

1w
.

APPENDIX C: CHARACTERISTICS OF THE TESTED MACHINES

We summarize in Table 3 the main characteristics of the three machines named A,
B, C.
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